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INTRODUCTION 

 
 In determining all permutation groups of a deferent degree The first work is probably due to Ruffini(1799)

,
who 

gives The possible orders of the groups of degree 5.This them is taken up-again By Cauchy (1845)
,
who determines 

the possible orders of the groups of degree Up to 6. Mathieu(1858)continus cauchy’s work
,
determining the Possible 

Orders of the groups of degrees 7 and 8. Miller(1896 a)Suggests that Ruffini’s work is in Complate
,
and citesan 

omission in Cauchy’s list for degree 6 .Serret(1850)determines all subgroups of 4s and 5s .Miller(1896 a)says that 
thise work is correct. 
kirkman(1862–3)Lists the transitive groups of degrees 3 to 10.Miller(1896 a) Says that This list is correct up to degree 
7

,
has missing six groups  of Degree 8 

,
another six of degree 9

,
and is highly inaccurate for degree 10. 

 Jordan(1871a)gives a table containing the numbers of conjugacy classes of primitive maximal soluble groups of 

degree lees then 
610 . He claims there are five such classes of degree 81

,
but there are only four

,
(see to Chapter 

6).This error is Likely to lead to errors for larger degrees.Also
,
the Second And third entries in the last row of this 

table should be Swapped.In The same paper
,
Jordan also gives a table containing the numbers of conjugacy classes 

of transitive maximale soluble groups of degree Up to 10000.(This is an a stounding achievment if for no other reason 

Than the amount of counting required to prepare it.for example
,
if 

p
 is a prime greater than 3

,
Jordan claims that 

the number of conjugacy classes of transitive maximal soluble groups of degree p2632  is 8306).Again
,
the error in 

the first table is Likely to errors in this on too.Jordan (1872)caunts all the primitive groups of degrees 4 to 17.His 
count Matches that of sims except that Jordan has one les for degrees 9

,
12 and 15

,
 eight less for degree 16 and 

two less For degree 17.These errors are Pointed out by Miller(1894
,
4b

,
1895c

,
1897a

,
1897b and 

1900a).Jordan(1874)states that every transitive group of degree 19 is either alternating
,
symetric or affine.This 

agrees With sim’s list.Veronese(1885)determines all groups of degree up to 6. 
 Miller(1983)cites several errors for degree 6.Ask with(1890) and Cayley(1891) determine the groups of degree 
6 and get the same answers.Their count of the intransitive ones is correct but undercount the transitive groups by 
three

,
as cole(1893a) points out

,
as kirkman(1862–3) had already (success fully

,
according to Miller)determined the 

transitinves 
,  degree 6 was then complete.Askwith(1890a) and Cayley(1891) also arrive at the same determination 

of the groups of degree 7.They undercount both the transitive and intransitives by one
,
as cole(1893a) Points 

out.With kirkman’s transitives and col’s additional intransitive
,
Degree 7 was then complete . 

2. Periliminares: 

 The first we determine the JS-imprimitives of ),4( kpGL . 

Recall that the number JS-maximals of ),2( kpGL as follows. 

http://www.jnasci./
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Therefore the Js-imprimitives of ),4( kpGL  are listed below. 

).4(mod1,),2(:),4(

),4(mod3,),2(:),4(

,),2(:),4(

,2,),1(:),4(
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Now we listed the JS-primitives of ),4( kpGL . 
 

6.1-The JS-primitives of ),4( kpGL . 

 There is one JS-primitive of ),4( kpGL whose unique maximal abelian normal subgroup has order ,14 kp

namely. 

                         
,:),4( 415 4 CCpM KP

k 



 

the normaliser of a singer cycle. 

 There is one JS-primitive of ),4( kpGL  whose unique maximal abelian normal subgroup has order ,12 kp

namely 

                         
.2,),2(:),4( 2

2

46  pCpMpM kk 
 

We think the filed of 
kp2

elements here as the filed of 2 by 2 matrices that is the linear span of our fixed singer cycle 

of ),2( kpGL . 

 Now we come to the JS-primitives of GL(4
,

kp ) whose unique maximal abelian normal subgroup is the scalar 

group.Let M  be such a group. There are three cases examine. 
 
6.1.1-Cas1: 

 Assume that 
kp )4(mod3 and that the Fitting subgroup F of M is 

.881
DDC kp


  Then F

M

is 

isomorphic to a completely reducible maximal soluble subgroup of )2,4(O that dosenot fix any non-zero isotropic 

subspace of the natural module for ).2,4(O However
, )2,4(O is isomorphic to 

,23 SwrS
so inparticular it is 

soluble. Therefore F

M

).2,4(O So in this case we find exactly one JS-primitive
,

).2,4()(:),4( 8817




 ODDCpM kp

k
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6.1.2-Case2: 

 Assume that )4(mod3kp  and that the Fitting subgroup F of M is 
.881

QDC kp


  Then F

M

is 

isomorphic to a completely reducible maximal soluble subgroup of )2,4(O that dose not fix any non-zero isotropic 

subspace of the natural module for )2,4(O . 

Threre is a unique )2,4(O -conjugacy class of such groups and that each group in this class is isomorphic to Hol

( 5C
).Therefore F

M

= Hol )( 5C
.So in this case we find exactly on JS-primitive

,
 

).()(:),4( 58818 CHolQDCpM kp

k 
  

 
6.1.3-Case3: 

 Assume that ).4(mod1kp Therefore we can write the Fitting subgroups F  of M as 
.881

DDC kp


  

Then F

M

is isomorphic to a completely reducible maximal soluble subgroup of )2,4(Sp  that dosenot fix any non-

zero isotropic subgroup of the natural module for )2,4(Sp . 

Every such subgroup is )2,4(Sp -conjugacy to either 
).()2,4( 5CHolorO

So in this case we find exactly two JS-
primitives 
 

).()(:),4(

),2,4()(:),4(

58811 0

8819

CHolDDCpM

ODDCpM

k

k

p

k

p

k











 
 

Although 
),4(9

kpM
and 

),4(10

kpM
admit the same description as 

),4(7

kpM
 and 

),,4(8

kpM
respectively

,

they arise in different way and so are given different numbers. For example the JS-maximals of )3,4(GL  are 

.,,,, 865321 MandMMMMM
Of these 

8753 ,, MandMMM
 are maximal soluble

,
while 

61 MandM
 are 

conjugate to subgroups of 
27 , MandM

 is a conjugate to a subgroup of 
.3M
The following table show the JS-

maximals of ),,4( kpGL for 
kp =1

,
…

,
30.  
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Table 1. The JS-maximals of 
),,4( kpGL

for 
30,...1kp

. 
 
 

10M
 9M  

  
6M  5M  4M  

 
2M  1M  )1,4(GL  

     
5M  

  
2M  

 )2,4(GL  
  

8M  7M  6M  5M  
 

3M  2M  1M  )3,4(GL  
     

5M  
  

2M  1M  )4,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )5,4(GL  
     

5M  
  

2M  1M  )6,4(GL  
  

8M  7M  6M  5M  
 

3M  2M  1M  )7,4(GL  
     

5M  
  

2M  1M  )8,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )9,4(GL  
     

5M  
  

2M  1M  )10,4(GL  
  

8M  7M  6M  5M  
 

3M  2M  1M  )11,4(GL  
     

5M  
  

2M  1M  )12,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )13,4(GL  
     

5M  
  

2M  1M  )14,4(GL  
  

8M  7M  6M  5M  
 

3M  2M  1M  )15,4(GL  
     

5M  
  

2M  1M  )16,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )17,4(GL  
     

5M  
  

2M  1M  )18,4(GL  
  

8M  
 

6M  5M  
 

3M  2M  1M  )19,4(GL  
   

7M  
 

5M  
  

2M  1M  )20,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )21,4(GL  
     

5M  
  

2M  1M  )22,4(GL  
  

8M  7M  6M  5M  
 

3M  2M  1M  )23,4(GL  
     

5M  
  

2M  1M  )24,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )25,4(GL  
     

5M  
  

2M  1M  )26,4(GL  
  

8M  7M  6M  5M  
 

3M  2M  1M  )27,4(GL  
     

5M  
  

2M  1M  )28,4(GL  

10M  9M  
  

6M  5M  4M  
 

2M  1M  )29,4(GL  
     

5M  
  

2M  1M  )30,4(GL  
 

Now we determind the primitive and imprimitive soluble subgroups of )2,4(GL . 
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6.2-The imprimitive soluble subgroups of )2,4(GL . 

 By above table there is one JS-imprimitives of )2,4(GL ,
namely 

)2,2(:2 GLM 
 2Swr or 

.)2,2(: 222 SwrMM   

A polycyclic presentation for 2M
 is: 

 

,1,,,,{ 2 aedcba
 

           
}.1,,,,

,1,,,

,1,,

,1,

32

2

32

2









eeeeeeece

dddddbd

cccec

bdb

dcba

cba

ba

a

 
 
6.2.1-Theorem:  

 A complete and irredundant list of )2,4(GL -jugacy class representatives of the irreducible subgroups of 2M
 is: 

            .,,,,,,,,,,,,,,  ecaecbdaecabedcba  
 
proof: 
 See short (1992

,
7.2

,
p.85). 

By use from above table
,
obviously that the JS-imprimitives of )3,4(GL  are 

),3,4(1M )3,4(2M
 and 

).3,4(3M

There are exactly 18 )3,4(GL -cojugacy classes of irreducible soluble subgroups whose gurdion  is 1M ،33 )3,4(GL

-conjugacy classes of irreducible soluble subgroups whose guardian is 2M
 and 14 )3,4(GL -conjugacy classes of 

irreducible soluble subgroups whose gardian is 3M
.Therefore there are 65 )3,4(GL -conjagacy classes of 

imprimitives soluble subgroups. We have picked exactly one representative from each of these classes. The following 

table details how many groups of each order there are in this set of representatives.(see short(1992
,
7.3

;
p.86-93)). 

 

Table 1. The imprimitive soluble subgroups of GL )3,4(
. 

 
Order 16 32 48 64 96 128 192 256 384 512 768 1152 2304 4608 

Number 5 12 2 12 5 10 4 6 3 1 1 1 2 1 

The JS-primitives of GL ),4( kp ,
for 3kp  are 

8765 ,, MandMMM
 

and for 
.2 5Mispk 
 

Now we determine the primitive subgroups of 
8765 ,, MandMMM
. 

 

6.4-The primitive subgroups of 
)3,4(5M

. 

 Recall that 
415 4),4( CCpM kp

k 


 ,
 the normaliser of a singer cycle. A polycyclic presentation for 5M

 is : 

,1|, 4  aba
 

      
.1, 14

 kk ppa bbb
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6.4.1-Theorem: 

 A complete and irredundant list of )2,4(GL -conjugacy class representatives of the primitive subgroups of 

)2,4(5M
 is: 

                   .,,,,,,,,, 33232  bbbabababa  
 
proof:  
 See short (1997

,
8.5

,
pp.95-100). 

Thus the six groups listed in the theorem are pairwise non-isomorphic
,
and so no two of them can be conjugate in 

)2,4(GL . 

Therefore there are 10 )3,4(GL -conjugacy classes of irreducible soluble subgroups:4 consist of imprimitive groups 
and 6 of primitives ones. 
 
6.4.2-Theorem(short

,
1992

,
8.5

,
pp.100):  

 There are exactly 21 )3,4(GL -conjugacy classes of primitive soluble subgroups that have 
)3,4(5M

 as their 
guardian. 
Thus by use above theorem we have obtained a complete and irredundant set of representatives of these classes. 
 

6.5-A generating set for 
),4(6

kpM
. 

 Recall that 
),4(6

kpM .),2( 2

2

4 CpM k  We already saw a polycyclic presentation for ),2( 2

4

kpM in 

chapter 2.From the proof of theorem 2.17
,
we see that a extra element of order 2 needed to generate 

),4(6

kpM

can be chosen so that it acts  

P-th poweringly on a generator of the center of ),,2( 2

4

kpM  and trivially on each of the other members of our 

canonical generating set for ).,2( 2

4

kpM Therefore we have. 

6.5.1-Proposition: 
),,2(),2(),4( 26

k

i

kk pMpMpM 
where i is 3 or 4 according as 

kp is congruent to 3 or 
1 modulo 4

,
respectively. 

 
Proof:  

 Set 
).,2(),2(: 2

k

i

k pMpMG 
Then ).1(48|| 2  kpG Let A  be our fixd singer cycle of ).,2( kpGL It is 

not difficult to see that 2IA
 is the unique maximal abelian normal subgroup of both G  and 

),4(6

kpM
. 

Therefore 
),4()( 6),4(

k

pGL
pMANG k 

(this last equality because )2,2(Sp  is soluble).Since 
,6MG 
the 

result follows. 

It is now easly to write down a polycyclic presentation for 
).,4(6

kpM
 

 

6.6-The generating set for 
),4(7

kpM
. 

 Recall that 
).2,4()( 8817




 ODDCM kp Let F  be the Fitting subgroup of 7M

. We could find a 
generating set by the methods given in chapter 2. The following structure theorem yields a much simpler way. 
 
6.6.1-Theorm:  

7M
 is conjugate to 

,)),2(),2(( 233 SpMpM kk 
 where the non-trivial element of the 2S

is the permutation 
matrix that interchanges the tensor factors. 
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Proof: 

 Let G  be the group
,)),2(),2(( 233 SpMpM kk 
as defined in the statement of the theorem. Them )(GFit  

is the tensor square of 
)),,2(( 3

kpMFit
and so 

.)( 881
QQCGFit kp


 Since 8Q

 is absolutely irreducible in 

),,2( kpGL it follows from the outer Tensor product Theorem that )(GFit  is irreducible.Then by Theorem 4.3 

)(GFit  is conjugat to F . 

 So G  is conjugate to a subgroup of the normaliser in ),4( kpGL of ,F namely 
.7M
Since 

|,||| 7MG 
the 

result follows. 

We now redefine 
),4(7

kpM
to be 

.)),2(),2(( 233 SpMpM kk 
 

It is then easly to write down a polycyclic presentation for 
.7M
 

Note that 




















),8(mod7),(

),8(mod3),)3,2((

21

21

7

k

p

k

p

pifScrBOC

pifScrGLC

M

k

k

 

 where by 
TcrG

  we mean the crown product of the group G and the transitive permutation groups T.In our 
case the crown product can be defined (abstractly) as the quotient of the wreath prooduct by the unigue diagonal 
central subgroup of the base group. 

 Obviously it is important to find the primitive subgroups of 
2)3,2( ScrGL
 and .2ScrBO Let N  be either of 

these groups
,
let a be the centre of N (the scalar subgroup of order2) and let E be the Fitting subgroups of N . 

Then A

E

 is symplectic space on which E

N

 acts in the natural way as ).2,4(O The following theorem identifies 

those primitive subgroups of N  which contain E . 
 
6.6.2-Theorem:  

 Let G  be a subgroup of N  that contains E . Then G is imprimitive if and only if E

G

 normalises amaximal 

isotropic subspace of A

E

. 
Proof: see short (1992

,
8.3

,
pp.95-97) 

6.7-The generating set for 
).,4(8

kpM
 

 Let F  be the field of 
kp elements

,
when ).4(mod3kp we construct a generating set for 8M

 by the following 
methods. 

Let z  be a generator for the scalar group
,
and define 

2211 ,, vanduvu
 by 

,,
10

01
:,

01

10
:,

01

10
: 22212221 IvIvIuIu 





























 















 

Where
,  and   belong to the prime subfield of F and .122   
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 Then 
},,,,{ 2211 zvuvu

generates the Fitting subgroup F of 
.8M
 To extend this set to a generating set for  8M 

,
we first require a generating set for 

).( 5CHol
 Actully

,
it is more convenient to choose a generating set for 

).2,4(O we choose this set to consist of the three matrices ,f g
 and h  defined below 

 





























































1100

0100

0001

0010

:

1000

0100

0001

0010

:

1000

0101

1011

0001

:







h

g

f

 
 

 setting  fhb :  and  gbfga 2)(: ,
we find that 

a
 has order 4, b  has order 5

,
and 

,)()( 2  bb a   so that 
).(, 5CHolba  

There are tow 
 

 resons we work with  gf , and h .One resons is that each is an involution
;
this means that the solutions to 

the liner equations we must solve are less complicated .The other reson is that each of these matrices has mainly 

zeros in its last colum
;
experience shows that calculations not involving 2v

are much simpler.It is also useful that the 

first three rows of 
g

and h are the same . In this case
,
there exists a matrix f of ),4( FGL  such that 

 

,111 uu f 
 

,21111 vvuv f   

u
f

2 2 u 1 u 2 ,  

v
f

2 2 v 2   . 

Where the i .And j
 are scalars.Setting 1 = 2 = 1 =1 and 2

=-1 . 
We find that one such matrix is   
 

f :=2
1

.

11

11

11

11


































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Then f  has determinat 1 
,
 and its square is 4I

. 
Let   be an element of F such that  
 

2 = 







;)8(mod72

,)8(mod32
k

k

pif

pif

 

Then
,
there exists a matrix 

g
 of ),4( FGL  such that 

,111 vug   

,

,

222

111

uu

uv

g

g









 

      .222 vvg   
Where the i  and j

 are scalars.Seting 
111  

 and 
,122    

we find that one such matrix is  
 

.

1010

0101

1010

0101

: 1



























 g

 

  

 Then 
g

 has determinat 1
,
and its square is 44 IorI ,

acording as 
kp is congruent to 3 or 7 modulo 8.Then

,
there exists a matrix h  of ),4( FGL  such that  

.

,

,

,

2222

222

111

111

vuv

uu

uv

vu

h

h

h

h

















 

Where the i  and j
 are scalars.Setting 

,11 2112   and  
we find that one such matrix is 
 



























 









12:h

  . 
Then h  has determinat 1

,
and its square is 4I

. 
Now set hfb : ,

Then 
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

























 

1111

1111
2 1





b

  . 
 

Also
, b has determinant 1 and order 5.The action of b on F  is given by the matrix  

 





















1101

0101

0001

1011

b

  . 

Now set bggfa 2)(: .Then 



























 











1111

1111

1111

1111

3a

 . 
Also

, a  has determinate 1 and its fourth power is -
.4I
Furthermore

, .2bba   The action of a  on F is given by the 
matrix 
 

.

1110

1010

0111

0010



















a

 
 

 Finally we have that 
.,,,,,, 22118  zvuvubaM
 

Set 
.,,,,,: 2211  vuvubaN
It is clear that 

),4(8 FSLMN 
 and that 

.8  zYNM
The given 

element
,
whitout z ,

from a polycyclic generating sequence for N ,
and the corresponding relations are: 

 

.,,,,,

,,,,,

,,,,

,,,

,,

,

4

2

222222222122212

4

2

22222212212

4

2

111112111

2

1211111

4

52

4

4

211

11

1

Ivvvvvvvvuuvvuvv

Iuuuuuuuuvvu

Ivvvuvuvuv

Iuvvuuvu

Ibbb

Ia

uvuba

vuba

uba

ba

a












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 Note that each of these relations is independent of the value of 
kp modulo 8.  

It can be checked via CAYLEY that N dosenot split over FN  . 
 

6.8-Some primitive subgroups of 
),4(6

kpM
 

 Recall that 
),,2(),2(),4( 26

k

i

kk pMpMpM 
 where i is 3 or 4

,
acording  

as 
kp is congruent to 3 or 1 modulo 4

,
respectively

,
Also recall that  

 






















.)8(mod5

,)8(mod3)3,2(

,)8(mod1

),4(
1

k

k

k

p

k

i

pifNS

pifGL

pifBO

CpM k

 

 Therefore
,
since the scalar group is the subgroup that is amalgamated in 

the tensor product
,
we may write 

 


















).8(mod5

),8(mod3)3,2(

),8(mod1

)(),4( 216

k

k

k

p

k

pifNS

pifGL

pifBO

CCpM k 

 
 

 Then subgroup amalgamated in this central product of order 2
,
except when ),8(mod5kp in which case it 

has order 4. In this central decomposition of 
,6M

 denote the first central factor by X  and the second by Y . 

In this section we determine some primitive subgroups of
),4(6

kpM
by using our knowledge of YX, and of the 

subgroups of central products. 
 
6.8.1-Proposition: 

 Every primitive subgroup of 
),4(6

kpM
contains the scalar matrix 4I

. 
 
Proof: 

 The proof when )8(mod1kp  is sufficient to indicate the method. Let G  be a subgroup of 
),4(6

kpM
 that 

dosenot contain 4I
. 

By examining the Burnside inclusion diagram of BO ,
we see that YG  must be of order 1 or 3.Therefore 

6CXG 
. Observe that 36 CXCX 

.If 3p ,
then this group is reducible

,
and if ,3p then it is not 

primitive
,
because it has a  

non–cyclic abelian normal 3-subgroup. 

We now specialise to the case ).8(mod3kp Then ).3,2(GLY   

Let G  be a primitive subgroup of 
),4(6

kpM
.Then ,YXG  and so by  

theorem 3.1.5
,
we can parametrise G  by the triple 

),,,( 0101 YYXX
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Where 
,1 GYXX  ,0 GXX  ,1 YXGY 

 
YGY 0  and   is an isomorphism from 01 XX

to 

01 YY
.Since G is primitive

,
it is clear(from elementary propertise of the tensor product)that both 1X

 and 1Y
 must 

be primitive.The primitive subgroups of X were discussed in section 2
,
and the primitive subgroups of Y were 

discussed in section 3. 
 
6.8.2-Lemma: 

The only possibilities for the pair
),( 01 YY
 are 

)),3,2(())3,2(),3,2((),),3,2(()),3,2(),3,2(()),3,2(),3,2(( 88 QSLandSLSLQGLSLGLGLGL
. 

Proof:By use from the burnside inclusion diagram of )3,2(GL yeilds that
,
if 1Y

 

did not contain )3,2(SL ,
Then G  would be a subgroup of 

.1216 DXorSDX 
 

The first of these obviously has a non-cyclic abelian normal 2-subgroup and so cannot be primitive.If 3p ,
then 

1 2DX 
 is reducible

,
and if ,3p then )1(31 2 kp and so 1 2DX 

 can not be primitive
,
because it has a non-

cyclic abelian normal 3-subgroup.Hence 
).3,2(1 SLY 

Since X is metacyclic
,
it follows that 01 XX

is 

metacyclic.Therefor 01 YY
 must be metacyclic too. 

 
6.8.3-Teorem: 

 Let G  be a subgroup of 6M
 such that ).3,2(SLYG  If B is an abelain normal subgroup of G ,

then 

0XB
. 

 
Proof: 

 Without loss of generality we can assume that 
.4  IB
 

Clearly YB  is an abelian normal subgroup of YG  ,
which is 

).3,2()3,2( GLorSL  
Therefore 

.4  IYB
Also YG  must normalise .YXB The only subgroups of )3,2(GL that are 

normalised by )3,2(SL are the normal subgroups of )3,2(GL .Since B is abeline
,
we conclude that YXB  is

 4I
or 8Q

. 
Since B  is normal in G ,

we have from by Theorem 3.1.5 that 
),/()()/()( YBYXBBXBYX   Where 

  is the set of outomorphism of YX   
induced by the elements of G acting by conjugation. 

Since the 3-elements of )3,2(SL act trivially on X but non-trivially on 
,/ 48  IQ
 we conclude that B  cannot be 

a diagonal subgroup of ,YX   

and thus 
XB 

. 
 
 
6.8.4-Theorem: 

 If 1X
is primitive subgroup of X ,

then 
)3,2(1 SLX 

is a primitive subgroup of 6M
. 

Proof:See short(1992
,
theorem 8.6.4

,
pp.102-103) 
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Let 
),3,2()3,2(: 1 SLKHandSLXG 

Where 
.12 XKI 
Then by proof of above theorem

,
we 

have the Figure following  
 
 

 
 
 
 
 
 
 
                                    1  
 
6.8.5-Corollary 1: 

 If 1X
 is a primitive subgroup of X ,

then 
)3,2(1 GLX 

is a primitive subgroup of 6M
. 

 
6.8.6-Theorem K: 

 If 1X
is a primitive subgroup of X ,

then the diagonal between 
)3,2()3,2( 10 GLXandSLX 

is 
primitive. 
 
Proof: 
 See short(1992

,
theorem 8.6.5

,
pp.103-104) 

Now we specialise to the case .3kp  We have  

).3,2()3,2()3,2()3,4( 16326 GLSDMMM 
 

The primitive subgroups of 16SD
 are 16SD , 8Q

and 8C
.When 01 XX  ,

we get six group
,
 all of which are primitive 

by theorem K and it corollary when 01 XX
has  

Order 2
,
we get five groups

,
all of which are primitive by theorem K . 

 ISOTEST shows that among these eleven groups there are ten distinct isomorphism types of sylow 2-subgroups 
.The two groups whose sylow 2-subgroups are isomorphic have derived groups of deffirent orders.Therefore these 

eleven groups are pairwise non-isomorphic.None of these groups is isomorphic to a subgroup of
)3,4(5M

 because 

that group is metacyclic.So there are exactly 
)3,4(11 GL

 

-conjugacy classes of primitive soluble subgroups whose gurdian is 6M
. 

 

6.9-The primitive subgroups of 
),4(7

kpM
 when ).8(mod3kp   

 we assume that )8(mod3kp  and F is the field of kp elements.Also
,
We denote ),4( FGL  by L .We 

established in section 3 that 

).)3,2((),4( 22/)1(7 ScrGLCpM kp

k 
  

Denote by N  the second direct factor in the decomposition.We must find the primitive subgroups of N .For 
this work

,
we have: 

6.9.1-Proposition 1: 
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 Let E  be a finite field
,
and let A  and G  be subgroups of ),( FnGL With A  abelian G  primitive soluble.If G  

normalises A ,
then G  is contained in a primitive maximal soluble subgroup of ),( EnGL whose unique maximal 

abelian normal subgroup contains A . 
 
Proof: 

 Denote ),( EnGL  by L .Since A is an abelian normal subgroup of the primitive Soluble group GA ,
it follows 

that A  is homogeneous and cyclic.Consequently
,
 

),,()( K
m

n
GLACL 

for some divisor m of n ,
and where K  

is a field extension of E  of degree m.Then 
))((: ACCB LL

is isomorphic to the multiplicative group of K ,
and 

cotains A .Since G  normalises A ,
it follows that G  normalises B .Let M  be a maximal soluble subgroups of 

)(BNL  that contains G .Then by Theorem 2.5 follows that M  is also a maximal soluble subgroup of L . 
 
6.9.2-Main Theorem: 

 If G  is a primitive subgroup of N  that is not conjugate to a subgroup of 
),4(5 FM

 or 
),4(6 FM ,

then G  

contains )(NFit . 
 
Proof: 

 (L.G.kovacs)Let G  be a primitive subgroup of N  that is not conjugate to a subgroup of 65 MorM
.The 

2.Subgroups of L  are not Primitive
,
and thus G  contains a non-trivial 3-element.The sylow 3-subgroups of N  are 

elementary abelian of order 9.Since they are not cyclic
,
it follows that 

)(3 GO
 is of order 1 or 3.Suppose the latter 

were true.Since 
)(3 GO

 would not be scalar
,
it would follow from the proposition 1 that G  is conjugate to a subgroup 

of a  JS-maximal whose uniqe maximal abelian normal subgroup is not scalar.The only such groups are 

65 MandM ,
so we have reached a contradiction.Therefore 

1)(3 GO
.We have shown that )(GFit is a 2-

group.Since )2,4(O  (that is )(/ NFitN ) has no non-trivial normal 2-subgroups
,
it follows that 

).()( NFitGGFit   

By corollary(iF G  is a primitive subgroup of ),( FnGL ,
and N  is a nilpotent normal subgroup of G ,

then every 

abelian characteristic subgroup of N  is cyclic).every abelian charcteristic subgroup of )(GFit is cyclic.If a subgroup 

of 88 DD 
 has this property

,
Then it is isomorphic to one of 848842 ,,,,,1 DCQDCC 

 and 88 DD 
.Since G  is not 

a 2-group and )(GFit is a 2-group
,
it follows that Out( )(GFit ) is not a 2-group.Therefore )(GFit  is isomorphic to

88848, DDorDCQ 
.Suppose the second were the case.Then )(GZ would be cyclic of order 4

,
yet not 

scalar.Then by proposition 1 G  would be canjugate to a subgroup of 
,65 MorM
a contradiction.Now suppose 

that 8Fit(G) Q
 .  Then  

)(GFitG
is 33 SorC

(because Out 
)( 8Q
is isomorphic to 3S

). 

 There are only two subgroups of Fit(N) that are isomorphic to 8Q ,
and so G  normalises both of them.Therefore 

G  is a subgroup of the base group 
)3,2()3,2( GLGL 

of N .Denote these central factors by X  and Y .(Refer 

to Figure for the Burnside inclusion diagram of )).3,2(GL With out loss of generality we can assume that 
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)()( YFitGFit  .Since )(/ GFitG has order dividing 6
,
therefore GYX  has order dividing 12.(By Theorem 

3.1.5).If this group were not 
,4  I
 then G  would normalise and abelian subgroup of X  that was not scalar-this 

would imply that G  were conjugate to a subgroup of 
65 MorM ,

a contradiction.On the other hand
,
if GYX 

were equal to 
,4  I
then G  would be a subgroup of Y  and so reducible

,
another contradiction.Hence 

.QFit(G) 8
This completes the proof. 

 It remains only to consider the subgroups of N  that contain )(NFit .By use from the subgroups of )2,4(O  

we find that there are 13 conjugacy classes of primtive subgroups of N  that contain )(NFit . Five of this classes 

contain subgroups of 5M
or 6M

 
;
The other eight donot.Thus there are eight ),4( kpGL -conjugacy classes of 

subgroups of N  whose gurdian is 7M
.  

In particular there are eight )3,4(GL -conjugancy classes of primitive soluble subgroups  whose guardian is 7M
. 

 

6.10-The primitive subgroups of 
),4(8

kpM
. 

Recall that of section 4 

                          
))()(( 5882/)1(8 CHolNQDCM kp


 .   

Denote by N  the second direct factor in this decomposition.We wish to find the primitive subgroups of N

.The 2-subgroups of N  are not primitive. Using the CAYLEY function lattice we find that there are exactly 

seven conjugacy classes of subgroups of N  which are not 2-groups. 
 The sub-diagram generated by these seven classes in the Burnside inclusion diagram is shown in Figure 6.10.1. 
       640 
                                                
                                                320 
                                     40               

                                      

4

5I
        160   

                                             1 0C
  

    5C
 

 
 
Figuare 6.10.1: 

 The Burnside inclusion diagram of the non 2-subgroups of N . 

Note that each subgroup of N of order 40 is metacyclic.If subgroup is primitive
,
 then by theorem 5.3.1 (from

,

L.G.kovacs) it is conjugate to a subgroup of 
).,4(5

kpM
 Consequently

,
if G  is a primitive subgroup of 8M

 that is 

a subdirect product of group of scalars and a subgroup of N  of order dividing 40
,
 

then the guardian of G  is 5M
.This leaves just three subgroups of N  to consider.By use of the subgroups of 

),2,4(O We known the cyclic subgroups of )2,4(O  of order 5 do not fix any non-zero isotropic subspace of the 

nutural module for ).2,4(O Therefore by theorem 2.35
,
each of the three remaining groups is primitive. 

In each of these three groups
,
we need to know the normal subgroups with cyclic quotients of odd order .The 

information in table 6.10.1 shows that there are very few such normal subgroups. 
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Table 6.10.1. The cyclic quotinets of some primitive subgroups of N . 

 
 

G  G   
GG 

 

)()( 588 CHOLQD 
 

588 )( CQD 
 4C

 

1088 )( DQD 
 588 )( CQD 

 2C
 

588 )( CQD 
 88 QD 

 5C
 

 

 We could now write down the primitive subgroups of 
),4(8

kpM
that are not conjugate to subgroups of

),4(5

kpM
.It remains only to show that none of these groups is conjugate to a subgroup of 

),4(6

kpM
 or 

),4(7

kpM
. 

This follow from the fact that neither
|)(:||)(:| 7786 MFitMnorMFitM
has 5 as a divisor.In particular

,
there 

are exactly three )3,4(GL -conjugacy classes of primitive soluble subgroups whose guardian is 
.8M
 

 
6.11-Result: 

 There are 108 )3,4(GL -conjugacy classes of irreducible soluble subgroup:65 consist of imprimitive groups and 
43 of primitive ones. 
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